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ABSTRACT: Bitter crab disease (BCD) is caused by Hematodinium sp., an endoparasitic dinoflagel-
late. It lives within the hemocoeloms of snow crabs Chionoecetes opilio and Tanner crabs C. bairdi,
making them unmarketable due to their bitter flavor. Two recent outbreaks of BCD have occurred in
Conception Bay, Newfoundland, one from 1999 to 2000 and another from 2003 to 2005. In the earlier
outbreak, prevalence was highest in juvenile and primiparous females and juvenile males. It was
thought to be highest in these hosts because they molt more frequently than larger males and the dis-
ease is transmitted to newly molted crabs. In the 2003 to 2005 outbreak, the prevalence of BCD
changed and was at its highest, 24 % in trapped males and 13.5% in trawled males. This apparent
shift in the dynamics of the infection between the earlier 1999 to 2000 and later 2003 to 2005 out-
breaks was highly correlated with 2 factors: an increase in bottom temperatures, associated with the
recent climatic warming trend in the Northwest Atlantic, and an increase in molting activity of the
snow crabs due presumably to the temperature increase within Conception Bay. That is, rising tem-
peratures occurring from 2003 to 2005 likely stimulated molting activity in snow crabs, which led to
an increase in susceptible hosts in the population. Given the positive correlation between increased
bottom temperature, increased molting activity, and the latest outbreak of BCD, we predict that fur-
ther trends in climatic warming will enhance transmission, spreading the parasite into additional
fishing areas.
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INTRODUCTION

Bitter crab disease (BCD), or bitter crab syndrome
(BCS), is a fatal condition caused by the endoparasitic
dinoflagellate Hematodinium sp. Infections occur in
Tanner crabs Chionoecetes bairdi, snow crabs C. opilio
(Meyers et al. 1987, 1990, 1996), and grooved Tanner
crabs C. tanneri (Bower et al. 2003) off the northwest
coast of North America. The disease was first reported
in snow crabs C. opilio from eastern Canada (Concep-
tion Bay, Newfoundland) in 1990 (Taylor & Khan 1995).
At that time the disease was rare, with a very low
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prevalence (0.037 %). Unfortunately, it spread rapidly
in the northeastern bays of Newfoundland, with preva-
lences rising in the late 1990s (Pestal et al. 2003), lead-
ing to an outbreak in Bonavista Bay in 1999 and in
Conception Bay in 1999 and 2000 (Shields et al. 2005).
The rapid spread of the disease is thought to be due to
hydrographic features, which include shallow sills at
the mouth of each bay that retain the transmissive
stages in restricted areas (Meyers et al. 1987, Shields
1994, Dawe 2002, Shields et al. 2005). Off Newfound-
land, BCD infections occur mostly in crabs from the
large northeastern bays, but it also infects those from

© Inter-Research 2007 - www.int-res.com



62 Dis Aquat Org 77: 61-72, 2007

offshore regions, where its prevalence is much lower
(Dawe 2002). It is not clear whether the same or similar
species of Hematodinium occurs in Tanner crabs from
northwestern North America and in snow crabs from
northwestern and northeastern North America.
Infections of Hematodinium spp. are known to be
fatal in virtually every infected host species (for review,
see Stentiford & Shields 2005). Mortality studies of
Tanner crabs (Meyer et al. 1987, Love et al. 1993) and
snow crabs (Shields et al. 2005) indicate that chroni-
cally infected crabs die over 100 or more days. Severe
losses have occurred in several fisheries. However,
most outbreaks in snow crabs are masked by the nature
of the industry, which is trap-based, prosecuted during
the spring and early summer and focuses on large,
legal-sized males, which often have low prevalences of
infection. Females and under-sized juvenile males,
which normally have higher prevalences, are not re-
tained in commercial traps due to mesh selection
(Pestal et al. 2003, Shields et al. 2005). The bitter flavor
that the disease imparts to infected snow and Tanner
crabs results in a direct loss to their fisheries (Meyers et
al. 1987, Eaton et al. 1991), where a single infected crab
can ruin an entire batch of sections during bulk pro-
cessing (D. M. Taylor pers. obs.). However, the obvious
changes in shell color and bitter flavor may take several
months to develop (Love et al. 1993, Pestal et al. 2003,
Shields et al. 2005), leading to an under-reporting of
the prevalence of BCD in species of Chionoecetes by
commercial fishers and at-sea biological observers.
Transmission of BCD in snow crabs is associated with
host molting. In snow crabs, >98 % of infections occurs
in recently molted crabs, with virtually no infections in
crabs that have not molted for a year or more (Shields
et al. 2005). In the 1999 to 2000 outbreak, females and
juvenile, small-clawed males had significantly higher
prevalences of BCD, and this was thought to be due to
smaller animals having a higher molting frequency
than larger, small-clawed males entering the fishery
(Pestal et al. 2003, Shields et al. 2005). Males have 2
allometric morphotypes that are related to maturity:
the small-clawed, often immature form, which molts
relatively frequently, and the large-clawed mature
form, which molts infrequently, if ever (Dawe et al.
1991). The former are often smaller and are largely
prepubescent and pubescent juveniles, but occasion-
ally they are sexually mature (Ennis et al. 1988, 1990,
Dawe et al. 1991). Snow crabs can skip molting in a
year if temperatures are low (e.g. —1.3°C; Taylor et al.
1993) or if they are not metabolically able (Benhalima
et al. 1998, Hébert et al. 2002). Egg laying and the
duration of egg incubation are annual or semiannual in
females depending upon temperature (Saint Marie
1993, Comeau et al. 1999). The minimum legal size
limit for males is 95 mm carapace width (CW), with the

fishery emphasizing the higher grade value of the
large-clawed males (>102 mm CW).

Since 1997, the presence of BCD has been incorpo-
rated in a qualitative way into assessments of the bio-
mass of snow crabs for the fishery (DFO 2006a). The
data from these assessments has led to an increased
understanding of the biology of Hematodinium infec-
tions (e.g. Taylor & Khan 1995, Dawe 2002, Pestal et al.
2003, Shields et al. 2005). Earlier we documented an
outbreak of BCD in Bonavista and Conception bays
from 1999 to 2000 (Shields et al. 2005). Here, we report
on a new epidemic in Conception Bay that began in
2003 and increased in severity through 2005. The lat-
est outbreak was different from the earlier outbreak in
that prevalence was highest in large male crabs rather
than in females and juvenile males. Therefore, the
objectives were (1) to document the extent of the latest
outbreak of BCD in snow crabs from Conception Bay,
(2) to re-assess the biotic factors associated with the
distribution and prevalence of the disease, and (3) to
determine the underlying causes for the change in the
dynamics of Hematodinium infections.

MATERIALS AND METHODS

Conception Bay. Conception Bay is a partially
enclosed embayment with diverse bottom types rang-
ing from sand and gravel at the mouth to thick mud in
the inner deep basin (Fig. 1). Commercial crab fishing
is conducted from 130 to 250 m, where bottom temper-
atures normally range from —1.3 to 0.0°C. The bay has
a mean clockwise surface gyre, but near-bottom cur-
rents are weak, with a slow outflow during the fall and
winter (DeYoung & Sanderson 1995). The residence
time of water in the bay has been calculated as 42 d
(DeYoung & Sanderson 1995). Conception Bay was
sampled for snow crabs Chionoecetes opilio in Sep-
tember or October months, from 1997 to the present. A
randomly stratified sampling program was used as
described in Pestal et al. (2003). Crabs were captured
with either a modified shrimp trawl or a fleet of traps
with different mesh sizes (primarily 2.5, 13.3, or 14 cm).
Details of the trawling and trapping are given in Pestal
et al. (2003) and Shields et al. (2005). Note that trawls
represent a more unbiased sampling method com-
pared to traps. Additional data on water temperature,
salinity, and depth in Conception Bay were obtained
by using CTDs from a series of annual multi-species
surveys conducted by personnel from Department of
Fisheries and Oceans, Canada.

Data were taken on crab sex, carapace width, claw
height (to separate small- and large-claw males), shell
condition (see below), maturity status (for females) and
macroscopic signs of BCD. Maturity status for ran-
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ratio, where the odds are a quotient of
the probability of an event occurring
divided by the probability that it does
not occur (Thrusfield 1995). An odds
ratio significantly >1.0 indicated that
the odds of a crab being infected with
BCD was a positive function of the
independent variable. An odds ratio
significantly <1.0 indicated a strong
negative function with the indepen-
dent variable. The prevalence ratio is
the prevalence of an infection occur-
ring in one group divided by the
prevalence of an infection in another
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Fig. 1. Conception Bay, Newfoundland, with the 200 m depth contour

domly selected male crabs was determined using the
formula F = 0.0806 x CW'9° where if F < claw
height/10, the crabs were large clawed and if F > claw
height/10, then crabs were small clawed (Comeau &
Conan 1992). Shell condition was used as a proxy for
molt stage and was scored as in Taylor et al. (1989),
where Shell Condition 1 represented individuals that
were soft, having molted within the last few months;
Shell Condition 2 represented individuals with hard
new shells, having molted within the last year; and
Shell Condition 3 represented individuals with hard,
old shells, not having molted within 2 yr. Later, an
additional category was added as Shell Condition 6,
represented by animals with hard, old shells inter-
mediate to Shell Conditions 2 and 3. Crabs with BCD
were diagnosed macroscopically by the distinct color
change to the carapace of infected crabs (see Fig. 1 in
Pestal et al. 2003). After 1998, crabs with suspected
infections had their carapaces removed and their
hearts were examined visually. White, opaque, or
cloudy hearts were indicative of BCD, whereas unin-
fected crabs had beige, translucent hearts; this was
verified histologically (100 % specificity; see Shields et
al. 2005).

Statistical analysis. Logistic regression, linear re-
gression, ANOVA and chi-square were used to ana-
lyze possible differences in host and environmental
factors in relation to infection. All statistics were done
with SYSTAT 10.0 (Wilkinson 1997). Logistic regres-
sion was used to model the effects of biotic variables on
the probability of a crab being infected with BCD. The
likelihood ratio test (LR test) was used to determine dif-
ferences between full and nested logistic models. The
odds ratio was calculated in the logistic regression
models. The odds ratio is the comparison of 2 odds as a

group (Thrusfield 1995). Prevalence is
the number of infected crabs divided
by the total number sampled, ex-
pressed as a percentage. Size classes
comprised 5 mm increments from the
beginning of the class size (i.e. 90 mm
class includes 90 to 94 mm crabs). Two temporal peri-
ods, 1997 to 2002 and 2003 to 2005, were identified
based on patterns in the prevalence of male crabs.
These 2 periods were treated as a categorical variable
for grouped analyses.

52°45W

RESULTS
Temporal pattern of disease

Over the 9 yr period of the study, 99 833 snow crabs
Chionoecetes opilio from Conception Bay were visu-
ally examined for overt infections of BCD. Of these,
72486 crabs were caught in traps and 27 347 were
caught in trawls. In 2001, the trawl specimens were
inadvertently collected with different footgear than
that used normally. The trawl data for 2001 were,
therefore, excluded from the analysis due to poor sam-
ple sizes and significant sample bias. However, the
trap data for that year were not affected. Further, the
temperature data for trawls in 2000 and 2001 were
taken from their paired trap stations. For trawls, 22 129
males were captured, of which 5841 were categorized
as large clawed and 12329 were categorized as small
clawed. For traps, 71334 males were captured, of
which 21293 were categorized as large clawed and
9500 crabs were categorized small clawed. Prevalence
and other variables did not differ significantly between
the reduced and complete data sets based on male
claw size.

The prevalence of infection of Hematodinium sp.
varied markedly between years in Conception Bay
(Fig. 2). In 1999, prevalence values were 9.5 and 2.8 %
in females and males from trawls, respectively. In 2000,
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Fig. 2. (A) Annual prevalences of bitter crab disease (BCD)

in trap- and trawl-caught Chionecetes opilio by sex. (B)

Annual mean fall temperatures for trawls and traps. SD

for temperature were all <0.20. Numbers are values for
prevalences during epidemics

prevalence values were higher, 26.7 and 18.2% in
females collected by traps and trawls, respectively. In
males, prevalence values were 2.7 and 8.0 % in traps
and trawls, respectively. From 2001 and 2002, the trap
data indicated that the epidemic in Conception Bay
had subsided, but, in 2003, prevalence values had
risen to 7.0 and 2.9% in trapped and trawled male
crabs and 7.0 and 4.7 % in trapped and trawled female
crabs, respectively. By 2005, prevalence was at an all-
time high for trapped and trawled male crabs, with
23.9 and 13.5 %, respectively, bearing infections. Infec-
tions in trapped females were also high at this time,
with a prevalence of 18.8 %.

The disease dynamics shifted after 2002 with higher
prevalence in legal-sized male crabs. Prior to 2003,
BCD in trawled crabs was most prevalent in sublegal,
small-clawed males (Fig. 3) and females (Fig. 2). From
2003 to 2005, the prevalence of the disease shifted
such that legal large- and small-clawed males had
much higher prevalence values than in previous years.
In 2005, the prevalence in legal large-clawed males
was 34.6 % and that in legal small-clawed males was
14.9%. This shift in the dynamics of infections was
even more evident when the size-frequency distribu-
tion was analyzed in relation to prevalence within each
size class. Prevalence in females peaked at 40 mm CW
in both temporal periods, 1997 to 2002 and 2003 to
2005 (Fig. 4). The size frequencies were significantly
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Fig. 3. Chionoecetes opilio. Annual prevalence of bitter crab

disease (BCD) in legal and sublegal males by claw morpho-

type for (A) trawls and (B) traps. Numbers are prevalences;
y-axes have different scales
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Fig. 4. Chionoecetes opilio. Size-frequency distribution and
prevalence of bitter crab disease (BCD) by size class (5 mm
classes) for female crabs caught in trawls from (A) 1997 to
2002 or (B) 2003 to 2005. Solid bars: number of crabs in size
class; solid line: prevalence (%) of BCD. Prevalence remains
similar in both periods; y-axes have different scales
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different between years because of the smaller num-
bers of females caught in the 30 to 45 mm CW classes
in the 2003 to 2005 period (chi-square = 528.1, df = 13,
p <0.001). Prevalence values in males were bimodal in
the 2003 to 2005 period, with a peak at 35 mm CW and
a peak building in sizes >85 to 130 mm CW (Fig. 5).
The size frequencies were significantly different
between years because of the smaller numbers of
males in the 30 to 45 mm CW classes in the 2003 to
2005 period (chi-square = 676.3, df = 25, p < 0.001).
Crabs of legal size also showed different proportions in
claw morphotypes between periods. In 1997 to 2002,
large-clawed males made up 94.4 and 84.2% of the
legal-sized catch in traps and trawls, respectively. In
2003 to 2005, large-clawed males made up 54.6 and
63.9% of the legal catch in traps and trawls, respec-
tively.

Crab density was not associated with the outbreaks.
Density, as catch per unit effort (CPUE, as mean num-
ber of male crabs per pot), was variable among years
for male crabs caught in traps (Fig. 6). However, CPUE
in 2004 and 2005 showed a downward trend, with
CPUE in 2005 being significantly lower than in other
years, except for 2004, which was significantly lower
than the years with the highest CPUE (ANOVA, df = 8,
231, p < 0.001, F=6.7209, Tukey's honestly significant
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Fig. 5. Chionoecetes opilio. Size-frequency distributions and

prevalence of bitter crab disease (BCD) by 5 mm size classes

for male crabs caught in trawls from (A) 1997 to 2002 or (B)

2003 to 2005. Solid bars: number of crabs in size class;

solid line: prevalence (%) of BCD. Note the shift in prevalence

in the larger size classes after 2003. Frequency axes varies
by period
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Fig. 6. Chionoecetes opilio. Abundance (frequency) and catch

per unit effort (CPUE; crabs per tow [trawl] or pot [trap]) over

time for male crabs from (A) trawls and (B) traps. y-axes differ

between methods of capture. SE for CPUEs in trawls were
very small (not shown)

difference [HSD] test). For trawl-caught crabs, CPUE
was calculated as the mean number of crabs per tow.
CPUE for trawl-caught crabs was also variable among
years. CPUE in 2004 and 2005 showed a downward
trend, with CPUE in both years being significantly
lower than in years with high CPUE (1998 to 2003,
excluding 2001) (ANOVA, df = 8, 158, p < 0.001, F =
8.9346). That is, high densities of crabs were not asso-
ciated with increased prevalence of BCD. As expected,
crab abundance (raw frequencies of crabs) showed a
similar pattern to CPUE. In traps and trawls there were
significantly more sublegal crabs in 2004 than in other
years, but there was no association with prevalence.

Temporal patterns in molting

Shell condition, as a proxy for molting activity,
showed 2 distinct temporal patterns in both the
trapped and trawled male crabs. Prior to 2001, large-
clawed males in Shell Condition 2 (hard, new shell,
molted within the preceding year) made up a small
proportion (generally <20%) of the subpopulation of
large-clawed crabs (Fig. 7). However, from 2002 to
2005, the proportion of small-clawed males moulting
into large-clawed animals (large-clawed Shell Condi-
tion 2) increased markedly to >75%, indicating an
increase in molting activity in this subpopulation of
crabs. Interestingly, from 1997 to 2005, a large propor-
tion of small-clawed crabs were in Shell Condition 2
(70 to 80%), with the exception of 2001, when little
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Fig. 7. Chionoecetes opilio. Proportion (%) of large-clawed
male crabs in Shell Condition 2 compared to large-clawed
male crabs in other shell conditions over time plotted with
similar data for small-clawed male crabs in (A) traps and (B)
trawls. Other shell conditions (1, 3 and 6) are not shown as
they were considerably smaller in proportion. Trawl data for
2001 were included because the collection gear may not have
biased shell type

molting activity occurred in either small- or large-
clawed males. This pattern was similar in both trapped
and trawled animals.

The prevalence of infection differed significantly
among shell conditions. From 1997 to 2002, 98.4 % of
the infections occurred in crabs in Shell Condition 2,
with 1.4% in crabs in Shell Condition 6, and 0.1 % in
crabs in Shell Conditions 1 and 3. From 2003 to 2005,
91.9% of the infections occurred in crabs in Shell
Condition 2, with 7.9% in crabs in Shell Condition 6,
and 0.2% in crabs in Shell Condition 1. Further, the
size of infected crabs varied between shell conditions.
For 1997 to 2002, the mean size of trawled male crabs
in Shell Condition 6 with BCD (intermediate, not
molted within preceding year) was 87.1 + 0.4 (SE) mm
CW, which was significantly larger than that for
infected crabs in Shell Condition 2 (48.6 £ 0.9 mm CW)),
but there were no differences in sizes in 2003 to 2005
(2-way ANOVA, condition, temporal period, df = 1,
4089, p < 0.001).

Temperature and BCD

Bottom temperature was significantly higher in Con-
ception Bay during 2004 and 2005 (Fig. 1) compared to

other years (ANOVA, df = 6, 9183, F= 9899, p < 0.001,
Tukey's HSD, p < 0.001). Mean bottom temperatures
for the fall periods were positively correlated with
prevalence of BCD in trawled crabs (linear regression,
prevalence = 3.4189 x temperature - 0.9117, df = 8, cor-
relation coefficient = 0.7440, p = 0.0215), but the 2004
and 2005 data points were clearly statistical outliers
with heteroscedastic residuals, weakening the rela-
tionship. However, data from the multi-species trawl
surveys collected in other months indicated that
monthly temperatures were higher than historic means
in Conception Bay in the 2003 to 2005 period com-
pared to 1997-2002 (Fig. 8). Further, spring and early
summer temperatures were 0.5 to 1.0°C higher in the
2003 to 2005 period. The overall mean temperature
from 1997 to 2002 was -0.88 + 0.15 (SD) (n = 158),
which was significantly different (t-test, p < 0.001)
from that for 2003 to 2005, which was —0.30 + 0.41 (SD)
(n = 114).

The relationships between fall bottom temperature,
shell condition, maturity, and BCD were analyzed
using data on trawled males. This capture method
was considered unbiased with respect to crab size due
to the very small-meshed liner fitted into the cod end
of the trawl. The full model, which included all of the
interaction terms, was not significantly different from
the final model (LR test, chi-square = 1.34, p > 0.50);
therefore, the final model was used to examine the
associations between the independent variables and
prevalence (Table 1). Maturity (small- vs. large-
clawed males), temporal period (1997 to 2002 vs. 2003
to 2005), and carapace width were significant main
factors in the model; they also showed significant
interactions between variables. Temperature was not
significant as a main factor, yet it had significant
interactions with CW, shell condition, and temporal
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Table 1. Chionoecetes opilio. Estimates for the final logistic
regression model testing the effects of temperature, shell con-
dition (Condition 2 vs. all others), and maturity (small- vs.
large-clawed male) on the probability of infection by bitter
crab disease (BCD) for male snow crabs trawled from Concep-
tion Bay, 1997 to 2005. Years were grouped into 2 temporal
periods (1997 to 2002, 2003 to 2005), because the model failed
to converge with individual years. Temp: temperature, con-
tinuous variable; Width: carapace width, continuous variable;
Shell: shell condition, categorical; Mature: claw morphotype,
categorical. The estimates and odds ratios for Shell are for
Shell Condition 2 (odds = 1.0) compared to other shell condi-
tions. The estimates and odds ratios for Mature are for large-
clawed males (odds = 1.0) compared to small-clawed males.
The estimates and odds ratios for Year are for 2003-2005
(odds = 1.0) compared to 1997-2002

Parameter Coefficient SE t P
Constant -2.46 0.35 -7.08 0.00
Shell 0.63 0.25 2.58 0.01
Mature -4.95 0.68 -7.32 0.00
Year -2.44 0.68 -3.56 0.00
Temp -0.27 0.52 -0.51 0.61
Width -0.01 0.00 -1.95 0.05
Width x Temp 0.01 0.00 2.17 0.03
Width x Mature 0.05 0.01 7.30 0.00
Width x Year -0.02 0.00 -5.28 0.00
Temp x Shell 1.17 0.39 3.02 0.00
Temp X Year -3.14 0.45 -7.01 0.00
Shell x Year 1.63 0.46 3.55 0.00
Shell x Mature 1.38 0.34 4.05 0.00
Parameter Oddsratio —95.0% CI——

Upper Lower
Shell 1.88 3.05 1.17
Mature 0.01 0.03 0.00
Year 0.09 0.33 0.02
Temp 0.77 2.11 0.28
Width 0.99 1.00 0.99
Width x Temp 1.01 1.02 1.00
Width x Mature 1.05 1.06 1.04
Width x Year 0.98 0.99 0.97
Temp x Shell 3.23 6.91 1.51
Temp X Year 0.04 0.10 0.02
Shell x Year 5.10 12.55 2.07
Shell x Mature 3.96 7.71 2.03
Log likelihood (LL): —=2160.58, LL of constants only model
= LL(0) = -2531.81, 2 x [LL(N) — LL(0)] = 742.46 with 12 df
chi-square p-value = 0.00, McFadden's rho-squared =
0.15; n = 672 infected crabs, 10 364 uninfected crabs

period, but not with maturity. Temperature had the
largest significant interaction term with temporal
period (slope = -3.14, odds = 0.04) followed by its
large positive interaction with shell condition (slope =
1.17, odds = 3.23). Shell condition also was not signifi-
cant as a main factor, but it had significant interac-
tions with maturity, temporal period, and tem-
perature. The significantly strong interactions
between shell condition and maturity and between

shell condition and temperature are also indications of
increased molting activity occurring in the snow crab
population in the 2003 to 2005 period. In the logistic
regression model, the probability of infection was
clearly associated with temperature when shell condi-
tion and carapace width were held constant, primarily
because of the changes in the interaction terms
(Fig. 9). Therefore, temperature was a significant pos-
itive factor in BCD infections in 2003 to 2005, but a
weak negative or non-significant factor in the 1997 to
2002 period, primarily because temperature was rela-
tively constant in the earlier period.

The relationships between fall bottom temperature,
shell condition, maturity, and BCD were also analyzed
using data on trawled females. The full model, which
included all of the interaction terms, was not signifi-
cantly different from the final model (LR test, chi-
square = 3.20, df = 8, p > 0.50); therefore, the final
model was used to examine the associations between
the independent variables and prevalence (Table 2).
All of the variables except maturity (immature vs.
mature) were significant main factors in the model, but
only width versus maturity and temperature versus
temporal period had significant interactions. Shell con-
dition, maturity, temporal period, and the interaction
between temperature and temporal period all had
large slopes, indicating strong positive or negative
associations with BCD. Unlike in males, temperature
did not have a significant interaction with shell condi-
tion or maturity for the females, nor did shell condition
interact significantly with maturity. There was no evi-
dence that females had increased molting activity in
the 2003 to 2005 period. However, in the logistic
regression model, the probability of infection was neg-
atively associated with temperature between 1997 and
2002, but positively associated with temperature in the
2003 to 2005 period (Fig. 10).

Probabilities of infection and risk factors

The probability of infection with BCD differed sig-
nificantly between male and female crabs for both
periods, 1997 to 2002 and 2003 to 2005. Therefore,
logistic regression models testing the effects of cara-
pace width and maturity stage on the probability of
infection were fit separately for male and female
crabs (Tables 1 & 2). Probabilities of infection for
small- and large-clawed males in relation to width
showed marked differences between periods. When
temperature was held constant at 0°C with Shell Con-
dition 2, the slope of the relationship between proba-
bility of infection and carapace width changed
markedly for large-clawed males between temporal
periods (Fig. 11). The slope did not change for small-
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Fig. 9. Chionoecetes opilio. Estimated probabilities of infec-
tion with bitter crab disease (BCD) in relation to temperature
for male snow crabs trawled from Conception Bay over 2 tem-
poral periods: (A) 1997 to 2002 and (B) 2003 to 2005, with
carapace width (95 mm CW) and Shell Condition 2 (shell 2)
held constant. Regression model and equations are given in
Table 1. Different molt conditions (Shell Condition 2 vs. other
shell conditions) and maturity (immature vs. mature) have
widely different probabilities of infection in the 2 temporal
periods. Note change in scale of y-axes between periods

clawed males between periods, but the probability of
infection was significantly greater in the 2003 to 2005
period. Therefore, both small- and large-clawed
males had significant changes in their probabilities of
infection after 2003 compared with those prior to
2003. In contrast, the probabilities of infection for
immature and mature females did not differ in the
signs of their slopes between periods, but the proba-
bilities of infection were significantly greater for
immature females in the 2003 to 2005 period com-
pared to individuals in the other groups (Fig. 11).
Several host factors were analyzed separately to
determine prevalence ratios (as a proxy for the odds
ratios in cross-sectional studies; Table 3). Using this
simplified analytical method, the shift in the dynamics
of BCD infections was obvious in the prevalence ratios
between males and females between temporal peri-
ods. The ratios changed significantly for large-clawed
males, legal-sized crabs (largely comprised of large-

Table 2. Chionoecetes opilio. Estimates for the final logistic
regression model testing the effects of temperature, shell con-
dition (Condition 2 vs. all others), and maturity on the proba-
bility of infection by bitter crab disease (BCD) for female snow
crabs trawled from Conception Bay, 1997 to 2005. Years were
grouped into 2 temporal periods (1997 to 2002, 2003 to 2005),
because the model failed to converge with individual years.
Temp: temperature, continuous variable; Width: carapace
width, continuous variable; Shell: shell condition, categorical;
Mature: maturity status, categorical. Estimates and odds ra-
tios for Shell are for Shell Condition 2 (odds = 1.0) compared
to other shell conditions. Estimates and odds ratios for Mature
are for mature females (odds = 1.0) compared to immature
females. Estimates and odds ratios for Year are for 2003-2005
(odds = 1.0) compared to 1997-2002

Parameter Coefficient  SE t P
Constant -4.97 0.67 -7.44 0.00
Shell 2.27 0.61 3.72 0.00
Mature 1.95 1.66 1.17 0.24
Year -1.67 0.62 -2.69 0.01
Temp 0.98 0.23 4.31 0.00
Width 0.03 0.01 4.82 0.00
Width x Mature -0.06 0.03 -2.12 0.03
Temp X Year -2.80 0.66 -4.25 0.00
Parameter Odds ratio —95.0% CI——

Upper Lower
Shell 9.64 31.76 2.92
Mature 7.00 182.14 0.27
Year 0.19 0.64 0.06
Temp 2.67 4.17 1.71
Width 1.03 1.04 1.02
Width x Mature 0.94 1.00 0.89
Temp X Year 0.06 0.22 0.02
Log likelihood (LL): -982.85; LL of constants only model =
LL(0) =-1088.59; 2 x [LL(N) - LL(0)] = 211.49 with 7 df chi-
square p-value = 0.00; McFadden's rho-squared = 0.10;
n = 344 infected crabs, 2826 uninfected crabs

0.05
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Fig. 10. Chionoecetes opilio. Estimated probabilities of in-

fection with bitter crab disease (BCD) in relation to tempera-

ture for female snow crabs trawled from Conception Bay over

2 temporal periods. Model and regression equations are given

in Table 2. Different molt conditions (Shell Condition 2 vs.

other shell conditions) and maturity (immature vs. mature)
have widely different probabilities of infection
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Fig. 11. Chionoecetes opilio. Estimated probabilities of
infection with bitter crab disease (BCD) by carapace width for
(A) small- and large-clawed males and (B) immature and
mature female snow crabs trawled from Conception Bay over
2 different temporal periods, with temperature held at 0°C
and Shell Condition 2. Note the shift in the slopes for the
large-claw males in 2003 to 2005. Regression equations are
given in Tables 1 & 2

claw males), and for crabs in other shell conditions. In
summary, a juvenile female crab in Shell Condition 2
had the greatest risk of disease prior to 2003 (Table 3),
whereas a legal-sized, large-clawed male in Shell
Condition 2 had similar or greater risk of disease in
2003 to 2005.

DISCUSSION

We have documented an underlying shift in the fac-
tors that may be responsible for outbreaks of BCD in
snow crabs Chionoecetes opilio from Conception Bay,
Newfoundland. Increased molting activity, likely
triggered by rising bottom temperatures, led to an
increase in the number of susceptible prerecruit small-
clawed juveniles and adolescent small-clawed males
in the population from 2002 to 2005. Because transmis-
sion of BCD is associated with molting (Shell Condi-
tions 1 and 2) (Shields et al. 2005), the prolonged
increase in molting activity from 2002 through 2005 led

to a profusion of susceptible hosts, fueling the epi-
demic over time (see Fig. 7). Prior to 2001, the propor-
tion of juvenile males and females that had molted
recently (Shell Condition 2) remained high (40 to
70 %), and likely sustained the epidemic in juveniles
and females. In 2001, molting activity was significantly
reduced in the crab population (a condition known as
skip molting — see below). This likely caused the 1999
to 2000 outbreak to subside due to a substantial
decrease in the number of susceptible hosts, and may
have helped to synchronize molting activity in 2002,
contributing to the increase in molting activity in con-
junction with rising temperatures. Such enhanced
molting events have been documented in the Tanner
crab Chionoecetes bairdi, which is a close congener of
the snow crab (Stone 1999). Further, sporulation of
Hematodinium in the Norway lobster Nephrops
norvegicus is timed with molting, and annual molting
patterns may determine the likelihood of an outbreak
in a particular year (Stentiford et al. 2001). In years
when molting is primarily synchronous, prevalence of
disease increases; in years when molting is asynchro-
nous, lower prevalence occurs.

Molting frequency and, possibly, molt increment are
positively correlated with temperature in the Crus-
tacea (e.g. Conan 1985, Fisher 1999), and snow crabs
appear to be no exception. However, snow crabs can
skip an annual molt, even at small sizes (Benhalima et
al. 1998, Hébert et al. 2002), presumably when physio-
logically stressed by either environmental or density-
dependent factors. Accordingly, in 1985, the snow crab
fishery off the Avalon Peninsula, Newfoundland, expe-
rienced a collapse in landings that was associated with
a temperature decline from -0.6 to —1.4°C starting in
1982 (Taylor et al. 1993). The lower temperature
apparently interrupted the molting activity of the snow
crabs causing them to skip molting during cold years.
While circumstantial, the converse of warmer temper-
atures increasing molting activity also has been shown
in snow crabs (Taylor et al. 1993). Interestingly, even
though temperature was strongly correlated with BCD
in females, it showed no statistical interaction with
shell condition, which it did in males. Prevalence val-
ues between trawled females were not significantly
different during the height of each outbreak (2000 and
2005). Nonetheless, in our study, increasing water tem-
peratures were correlated with increasing molting
activity in small-clawed males molting into large-
clawed males, and molting was strongly correlated
with BCD.

How Hematodinium infections in snow crabs re-
spond to temperature increases is at present unknown.
Low temperatures and salinities limit the proliferation
of Hematodinium sp. in blue crabs Callinectes sapidus
(Messick et al. 1999). However, the parasite in boreal
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snow crabs is cold-adapted and has a very different
biology than the species infecting blue crabs (see
Stentiford & Shields 2005, for review).

With the shift in BCD infections into legal-sized male
crabs, the 2003 to 2005 outbreak had a direct economic
impact on the fishery. Conception Bay is within the 3L
Fishing Division of the North Atlantic Fisheries Orga-
nization. In 2005, snow crab landings totaled 43900
metric tons (t) in Newfoundland, with 24 900 t (56.7 %)
from the 3L division (DFO 2006a). The quota for Con-
ception Bay was 1100 t in 2005, down from 1450 t in
2003 (DFO 2006b). In the 2005 fall survey in Concep-
tion Bay, 34.6 % of the legal-sized, large-clawed males
and 14.9% of the legal-sized, small-clawed males had
BCD (Fig. 3), and legal-sized, large-clawed males rep-
resented 75.4 % of the legal catch in our 2005 trap data.
Assuming that infected crabs in June, at the start of the
fishery, were identifiable or in a similar stage of infec-
tion to those in October (but see below) at the time of
the survey, then an estimated 327.1 t of crab, worth
~Can$1.04 million in ex-vessel price (at Can$3190 t™}),
was discarded by the fishing industry in Conception
Bay. However, broad estimates of monetary impact are
not feasible for 2 reasons. Prevalence can vary
between adjacent bays, with epidemics occurring in
one and not another (Shields et al. 2005), and infec-
tions may not be obvious in the early part of the fishing
season (Love et al. 1993, D. M. Taylor pers. obs.).
Infected crabs may not be identifiable as such in June,
the peak time of fishing activity. However, the crabs
that were obviously infected in October would be lost
to the following year's fishery. In the 2000 outbreak,

direct losses due to BCD were difficult to estimate,
because the disease was most prevalent in under-sized
males and females (Shields et al. 2005).

Mortalities in the small females and juvenile males
may affect future recruitment and economic returns in
this fishery. The change in the size-frequency distribu-
tions for females and males during the 2003 to 2005
outbreak may reflect increased mortality in the smaller
infected sizes or it may reflect vagaries in sampling
over 3 versus 6 yr. Given that infected Tanner and
snow crab hosts die from their infections (Meyers et al.
1987, Love et al. 1993, Shields et al. 2005), we specu-
late that an increase in mortality during this second,
larger outbreak may have been responsible for the
decrease in the more heavily infected smaller size
classes. The mortality was not as evident in the larger
size classes, presumably because the outbreak had
only recently spread into the legal, large-clawed
males.

Recent epidemics of disease agents in marine ani-
mals have been attributed to stress brought about by
climatic variability related to global warming (Epstein
et al. 1998, Harvell et al. 1999). However, there is some
question as to whether these epidemics are truly emer-
gent phenomena or simply the result of increased
scientific investigation (Harvell et al. 2002, Ward &
Lafferty 2004). Our monitoring of snow crabs has
shown that epidemics of BCD are indeed emerging
phenomena, with 10-fold increases in prevalence
occurring over the short period since its initial discov-
ery in the fishery (Fig. 2; see Taylor & Khan 1995,
Shields et al. 2005). In snow crabs, rising temperatures

Table 3. Chionoecetes opilio. Prevalence (% bitter crab disease, BCD) and prevalence ratios (PR) for single biotic risk factors in
relation to BCD from trawled snow crabs for 1997 to 2002 and 2003 to 2005. Prevalence ratio is given as the larger determinant as
the numerator over the smaller determinant as the denominator. Odds ratios for carapace widths (CW) are given in Tables 2 & 3

Biotic 1997-2002 N 2003-2005 PR N
determinants % BCD (InPR + SE) % BCD (InPR + SE)
Sex Male 3.20 14728 6.12 7401
Female 11.25 3.52 3421 7.90 1.32 1760
(1.26 + 0.07) (0.27 + 0.10)
Maturity female Juvenile 14.79 2427 10.72 1007
Adult 2.62 5.24 993 4.13 2.56 751
(1.73 + 0.21) (0.95 +0.21)
Male claw morph Small claw 5.31 7625 5.56 4704
Large claw 0.82 6.48 4026 9.86 1.77 1815
(1.87 + 0.18) (0.57 + 0.10)
Legal size <95 mm CW 3.88 11604 4.34 5689
>95 mm CW 0.70 5.51 3124 12.03 2.77 1712
(1.71 + 0.22) (1.02 + 0.10)
Shell condition Other 0.26 5386 2.69 2115
Condition 2 6.605 25.40 12765 7.72 2.88 7046
(3.24 + 0.27) (1.05 +0.15)
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stimulated molting activity in the population, thereby
increasing the abundance of susceptible hosts. The
increased molting activity occurred over 3 yr, enhanc-
ing the amplification of the parasite to epidemic levels.
Furthermore, outbreaks of Hematodinium spp. are
associated with enclosed or entrained water masses,
which apparently facilitate transmission (see Sten-
tiford & Shields 2005 for review); and BCD is no excep-
tion, with increased prevalence associated with the
deeper, more restricted portions of Conception Bay
(Shields et al. 2005), a bay with weak circulation and
slow exchange (DeYoung & Sanderson 1995).

Climatic variability associated with global warming
may cause fragmentation or reduction of ecosystems —
changes that can force the concentration of hosts and
pathogens (Holmes 1996) —and such may be occur-
ring here. Snow crabs normally live at -1.4 to <3°C
(Powles 1968, Bréthes et al. 1987, Dionne et al. 2003),
and, prior to 2004, the mean fall temperature in Con-
ception Bay was —0.85 = 0.18°C (SD); thus, the nearly
1°C change in 2004 to 2005 was outside what these
crabs normally experience at this time. However, other
than increased molting activity and the relationship
with BCD, we do not know how rising temperature
may have affected these snow crabs or the pathogen.
In other marine and aquatic systems, rising tempera-
tures can lead to increased rates of disease transmis-
sion, exacerbate the severity of disease, and enhance
susceptibility to opportunistic infections in aquatic and
marine hosts (Esch et al. 1975, Sousa & Gleason 1989,
Lavigne & Schmitz 1990, Dobson & Carper 1992, Lloyd
1995, Marcogliese 2001). Given the association be-
tween temperature, molting, and outbreaks of BCD,
we speculate that increasing local ocean temperatures,
possibly associated with global warming, will prolong
and enhance the transmission and spread of epidemics
of the parasite into additional fishing areas.
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